

9th European Conference on Protective Clothing ,10-12 May, 2021

Hand and Forearm Cooling: Exploring Deep-Body Cooling in Hyperthermic Individuals

leex3140@snu.ac.k

Seon-Hong Seol, Gyu-Tae Bae, Nigel A.S. Taylor and Joo-Young Lee* Seoul National University, Seoul, Korea

Introduction

- The efficacy and utility of upper-limb cooling in hyper-thermic individuals is well established. and it is a feasible and effective cooling intervention to alleviate heat strain in the workplace.
- The purpose of this study was to evaluate that practice during recovery from ambulatory exercise performed in the heat (33°C, 70% relative humidity) at each of three speeds: light, inter-mediate and moderate intensity.
- Hypothesis: "Heat extraction accompanying upper-limb cooling would be faster following the highest work rate during recovery after exercise"

Methods

1. Subjects

Ν	Sex	Age (y)	Height (cm)	Weight (kg)	VO _{2max} (ml/kg/min)
8	Male	24 ± 2	176.4 ± 8.1	74.9 ± 7.2	52.3 ± 6.9
					IPB # 2004/003-025

2. Experimental procedures and measurements

· Water-perfused sleeves for hand and forearm cooling

: The sleeves consisted of an inner mesh layer (85% nylon and 15% polyurethane) and an outer layer (92% polyester and 8% polyurethane) with 4 m of PVC tubing.

: The sleeves were donned as soon as possible after exercise ceased, and a 20-min recovery commenced. Water pumped through the sleeves was cooled to a mean inlet temperature of 6.3±0.2°C.

Whole body heating during exercise in 33°C and 70%RH

: Subjects exercised at each of three speeds (Trial A, B, and C). When rectal temperature reached 39°C, subjects stopped running. Subjects immediately adopted a seated position and donned the sleeves, which were perfused with 6.3°C water, during a 20 min recovery.

Speed 6 km.h ⁻¹ 8 km.h ⁻¹ 10 km.h ⁻¹ Intensity Light Intermediate Moderate %VO _{2max} 41.6±9.4 59.7±7.2 67.3±11.7		Trial A	Trial B	Trial C
Intensity Light Intermediate Moderate %VO _{2max} 41.6±9.4 59.7±7.2 67.3±11.7	Speed	6 km.h⁻¹	8 km.h ⁻¹	10 km.h ⁻¹
%VO _{2max} 41.6±9.4 59.7±7.2 67.3±11.7	Intensity	Light	Intermediate	Moderate
	$%VO_{2max}$	41.6±9.4	59.7±7.2	67.3±11.7

Experimental protocol and measurements

				Bo	dy temperat	ures (0.83 H	łz)			
				Oxygen	consumptio	n (breath-by	-breath)			
	Heart rate (0.83 Hz)									
Ĺ	Rest				Exercise			(Fo	Recovery	poling)
0	1	10	20	30	40	50	60	x	10	20
t					Time	(min)				t
Boo	ły mass	and uri	ne specific	gravity					Boo	ly mass

: Deep-body temperatures were measured continuously (5-s intervals) from auditory canal and the rectum. Skin temperatures (17 sites) were also measured continuously.

: Oxygen consumption (open-circuit respirometry) was measured using an automated system (breath-by-breath).

Heat extraction = Mass flow × Specific heat × Temp. difference

where, Heat extraction = removal of thermal energy from the skin (J.min⁻¹); Mass flow = water flow through the sleeve (L.min⁻¹); Specific heat = specific heat of water (4.186 J.g⁻¹.S⁻¹); Term, difference = difference between inflowing and outflowing water temperatures (*C).

Results

1. Physiological responses during rest, exercise & recovery

Stage	Variables .	Light	Intermediate .	Moderate .
Baseline	Oxygen consumption (mL.min ⁻¹).	404 (26).	431 (37).	383 (16).
	Heart rate (b.min ⁻¹).	76 (3).	75 (2) -	75 (3).
	Auditory canal temperature (°C)ª.	36.3 (0.2)	36.0 (0.1).	36.0 (0.2) -
	Rectal temperature (°C)-	37.0 (0.1).	36.9 (0.1).	37.0 (0.1).
	Mean skin temperature (°C)-	34.3 (0.1).	33.9 (0.5).	34.5 (0.1).
	Finger temperature (°C).	35.5 (0.1).	35.5 (0.1).	35.4 (0.1).
Exercise	Oxygen consumption (mL.min ⁻¹) $_{\circ}$	1589 (70)*,‡.,	2398 (130) -	2631 (53)
	Heart rate (b.min ⁻¹).	166 (4)*,*,	177 (5).	184 (4)-
	Auditory canal temperature (°C).	38.2 (0.2)	37.9 (0.3).	37.9 (0.1).
	Rectal temperature (°C).	38.8 (0.1).	38.9 (0.1).	38.8 (0.1).
	Mean skin temperature (°C)	37.0 (0.3)	37.1 (0.3) .	36.9 (0.4).
	Finger temperature (°C)	36.7 (0.4)	36.9 (0.5) .	36.8 (0.6)
Recovery	• Oxygen consumption (mL.min ⁻¹) •	527 (28) o	(28)° 576 (56)° 60	
	Heart rate (b.min ⁻¹).	121 (5).	119 (5).	121 (4).
	Auditory canal temperature (°C).	37.9 (0.3)	37.7 (0.2) ~	38.1 (0.1)
	Rectal temperature (°C).	38.7 (0.1)‡.	39.0 (0.1) -	39.2 (0.1)
	Mean skin temperature (°C).	36.0 (0.3).	36.3 (0.3)	36.2 (0.5)
	Finger temperature (°C)	33.5(0.4)	35.0 (0.7)	339(12)

2. Heat extraction

No difference among the 3 trials: -11.2±0.5 W (light), -11.8±0.6 W (intermediate) and -12.3±0.5 W (moderate).

3. Deep-body temperatures

 The auditory canal cooling rates were 0.03°C.min⁻¹ (light), 0.04°C.min⁻¹ (intermediate) and 0.05°C.min⁻¹ (moderate)(*P*=0.06). That same outcome during cooling was not evident within the rectal temperatures.

Conclusions

- ✓ Het: etraction from hyperthermic individuals, using upper-limb cooling, appears to be equally rapid, regardless of how fast heating occurred, providing those people attained the same level of hyperthermia prior to treatment.
- ✓ Due to the thermal inertia of the rectal tissues, rectal temperatures will not yield meaningful information when used in combination with rapidly changing thermal states during recovery after exercise.